Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Environ Manage ; 328: 116910, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495826

RESUMO

Urban air pollution is a global concern impairing citizens' health, thus monitoring is a pressing need for city managers. City-wide networks for air pollution monitoring based on low-cost sensors are promising to provide real-time data with detail and scale never before possible. However, they still present limitations preventing their ubiquitous use. Thus, this study aimed to perform a post-deployment validation and calibration based on two step methods for ozone low-cost sensor of a city-wide network for air pollution and meteorology monitoring using low-cost sensors focusing on the main challenges. Four of the 23 data collection units (DCUs) of the UrbanSense network installed in Porto city (Portugal) with low-cost sensors for particulate matter (PM), carbon monoxide (CO), ozone (O3), and meteorological variables (temperature, relative humidity, luminosity, precipitation, and wind speed and direction) were evaluated. This study identified post-deployment challenges related to their validation and calibration. The preliminary validation showed that PM, CO and precipitation sensors recorded only unreliable data, and other sensors (wind speed and direction) very few data. A multi-step calibration strategy was implemented: inter-DCU calibration (1st step, for O3, temperature and relative humidity) and calibration with a reference-grade instrument (2nd step, for O3). In the 1st step, multivariate linear regression (MLR) resulted in models with better performance than non-linear models such as artificial neural networks (errors almost zero and R2 > 0.80). In the 2nd step, the calibration models using non-linear machine learning boosting algorithms, namely Stochastic Gradient Boosting Regressor (both with the default and post-tuning hyper-parameters), performed better than artificial neural networks and linear regression approaches. The calibrated O3 data resulted in a marginal improvement from the raw data, with error values close to zero, with low predictability (R2 ∼ 0.32). The lessons learned with the present study evidenced the need to redesign the calibration strategy. Thus, a novel multi-step calibration strategy is proposed, based on two steps (pre and post-deployment calibration). When performed cyclically and continuously, this strategy reduces the need for reference instruments, while probably minimising data drifts over time. More experimental campaigns are needed to collect more data and further improve calibration models.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Calibragem , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , Coleta de Dados
2.
Sci Total Environ ; 727: 138385, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32498203

RESUMO

The use of low-cost sensor technology to monitor air pollution has made remarkable strides in the last decade. The development of low-cost devices to monitor air quality in indoor environments can be used to understand the behaviour of indoor air pollutants and potentially impact on the reduction of related health impacts. These user-friendly devices are portable, require low-maintenance, and can enable near real-time, continuous monitoring. They can also contribute to citizen science projects and community-driven science. However, low-cost sensors have often been associated with design compromises that hamper data reliability. Moreover, with the rapidly increasing number of studies, projects, and grey literature based on low-cost sensors, information got scattered. Intending to identify and review scientifically validated literature on this topic, this study critically summarizes the recent research pertinent to the development of indoor air quality monitoring devices using low-cost sensors. The method employed for this review was a thorough search of three scientific databases, namely: ScienceDirect, IEEE, and Scopus. A total of 891 titles published since 2012 were found and scanned for relevance. Finally, 41 research articles consisting of 35 unique device development projects were reviewed with a particular emphasis on device development: calibration and performance of sensors, the processor used, data storage and communication, and the availability of real-time remote access of sensor data. The most prominent finding of the study showed a lack of studies consisting of sensor performance as only 16 out of 35 projects performed calibration/validation of sensors. An even fewer number of studies conducted these tests with a reference instrument. Hence, a need for more studies with calibration, credible validation, and standardization of sensor performance and assessment is recommended for subsequent research.

3.
Environ Res ; 176: 108534, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220738

RESUMO

Poor indoor air quality can adversely affect children's health, comfort and school performance, but existing literature on quantifying indoor air pollutants (IAP) determinants' in nursery and primary schools is limited. Following previous studies, this study mainly aimed to quantify determinants of selected IAP, in nursery and primary schools from both urban and rural sites, accounting for seasonal variations. In 101 indoor microenvironments (classrooms, bedrooms and canteens) from 25 nursery and primary schools, CO2, CO, HCOH, NO2, O3, total volatile organic compounds, PM1, PM2.5, PM10, total suspended particles (TSP), and meteorological/comfort parameters were continuously sampled (occupancy and background levels), from at least 24 h to 9 consecutive days (not simultaneously) in each studied room; in some cases weekend was also considered. Children faced thermal discomfort and inadequate humidity, respectively in 60.1% and 44.1% of the studied classrooms. They were also exposed to high levels of IAP, namely PM2.5 and CO2 respectively in 69.0% and 41.3% of the studied classrooms, mostly in urban sites, depending on season and on occupancy and activity patterns (different amongst age groups). As PM2.5 and CO2 were the major concerning IAP, multivariate linear regression models were built to quantify (explained variability and relative importance) their main determinants, in both occupancy and non-occupancy (background) periods. Models for occupancy periods showed higher explained variability (R2 = 0.64, 0.57 and 0.47, respectively, for CO2, PM2.5 and PM10) than for non-occupancy. Besides background concentrations (43.5% of relative importance), relative humidity (21.1%), flooring material (17.0%), heating (6.7%) and age group of the occupants (5.3%), adjusted for season of sampling (6.4%) were predictors in CO2 occupancy model. In the cases of PM2.5 and PM10 occupancy concentrations, besides background concentrations (71.2% and 67.2% of relative importance, respectively for PM2.5 and PM10), type of school management (8.8% and 15.2%) and flooring material (13.9% and 13.9%), adjusted for season of sampling (6.1% and 3.8%), were the main predictors. These findings support the need of mitigation measures to reduce IAP levels, and prevention actions to avoid children's exposure. Reducing the time spent indoors in the same microenvironment by doing more and/or longer breaks, improving ventilation and cleaning actions, and avoiding or making a better maintenance hardwood flooring materials, chalkboard use and VOC emitting materials, are practices that should be implemented and their impacts quantified.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Criança , Humanos , Material Particulado , Instituições Acadêmicas , Ventilação
5.
Rev Port Pneumol (2006) ; 22(3): 146-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26747645

RESUMO

Asthma is the commonest and most important chronic non-infectious disease in childhood and it has become more prevalent in recent years. There is a shortage of studies in relation to early childhood and so, as part of the INAIRCHILD project, this cross-sectional study aimed to assess the prevalence of asthma and its associated risk factors, namely demographic, environmental, psychosocial and clinical factors for infants and preschoolers living in Northern Portugal. Data concerning asthma prevalence were collected through questionnaires based on those from the International Study of Asthma and Allergies in Childhood (ISAAC-derived), the questionnaires were distributed to 1042 children attending the 17 nurseries involved in the INAIRCHILD project (10 in urban and suburban context, and 7 in rural context). The response rate was 48%. Prevalence of asthma based on symptomatology and odds ratio was calculated. Around 52% of the studied children presented at least one of the respiratory symptoms investigated (wheeze, dyspnea and cough) in the absence of upper respiratory infections. The prevalence of asthma was 10.7%, comparable to the figures for Portuguese schoolchildren (6-7 years old) reported by the national Directorate-General of Health, thus showing that an early diagnosis might be possible and helpful for the mitigation of childhood asthma. Environmental context (urban, suburban or rural), gender and family asthma history showed clear associations with asthma prevalence, namely non-rural location, male gender, and having an asthmatic parent were found to be risk factors.


Assuntos
Asma/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Humanos , Lactente , Portugal/epidemiologia , Prevalência , Fatores de Risco
6.
Environ Pollut ; 208(Pt A): 2-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26239833

RESUMO

Indoor air quality in nursery schools is different from other schools and this has been largely ignored, particularly in rural areas. Urban and rural nursery schools have different environmental characteristics whose knowledge needs improvement. Thus, this study aimed to evaluate continuously the concentrations of CO2, CO, NO2, O3, CH2O and total VOC in three rural nursery schools and one urban, being the only one comparing urban and rural nurseries with continuous measurements, thus considering occupation and non-occupation periods. Regarding CO2, urban nursery recorded higher concentrations (739-2328 mg m(-3)) than rural nurseries (653-1078 mg m(-3)). The influence of outdoor air was the main source of CO, NO2 and O3 indoor concentrations. CO and NO2 concentrations were higher in the urban nursery and O3 concentrations were higher in rural ones. CH2O and TVOC concentrations seemed to be related to internal sources, such as furniture and flooring finishing and cleaning products.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Escolas Maternais , Pré-Escolar , Monitoramento Ambiental , Humanos , Lactente , Portugal , População Rural
7.
Environ Res ; 142: 662-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26342590

RESUMO

This study, Part II of the larger study "Children's exposure to indoor air in urban nurseries", aimed to: (i) evaluate nursery schools' indoor concentrations of several air pollutants in class and lunch rooms; and (ii) analyse them according to guidelines and references. Indoor continuous measurements were performed, and outdoor concentrations were obtained to determine indoor/outdoor ratios. The influence of outdoor air seemed to be determinant on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) indoor concentrations. The peak concentrations of formaldehyde and volatile organic compounds (VOC) registered (highest concentrations of 204 and 2320 µg m(-3) respectively), indicated the presence of specific indoor sources of these pollutants, namely materials emitting formaldehyde and products emitting VOC associated to cleaning and children's specific activities (like paints and glues). For formaldehyde, baseline constant concentrations along the day were also found in some of the studied rooms, which enhances the importance of detailing the study of children's short and long-term exposure to this indoor air pollutant. While CO, NO2 and O3 never exceeded the national and international reference values for IAQ and health protection, exceedances were found for formaldehyde and VOC. For this reason, a health risk assessment approach could be interesting for future research to assess children's health risks of exposure to formaldehyde and to VOC concentrations in nursery schools. Changing cleaning schedules and materials emitting formaldehyde, and more efficient ventilation while using products emitting VOC, with the correct amount and distribution of fresh air, would decrease children's exposure.


Assuntos
Poluição do Ar em Ambientes Fechados , Exposição Ambiental , Escolas Maternais , População Urbana , Pré-Escolar , Humanos
8.
J Toxicol Environ Health A ; 78(13-14): 805-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167747

RESUMO

Lung cancer has been associated with radon concentration even at low levels such as those found in dwellings. This study aimed to (i) determine radon diurnal variations in three nurseries and one primary school in the Bragança district (north of Portugal) and (ii) compare radon concentrations with legislated standards and assess the legislated procedures. Radon was measured in three nurseries and a primary school in a rural area with nongranite soil. Measurements were performed continuously to examine differences between occupation and nonoccupation periods. Indoor temperature and relative humidity were also measured continuously. A great variability was found in radon concentrations between the microenvironments examined. Radon concentrations surpassed by severalfold the recommended guidelines and thresholds, and excessive levels of health concern were sporadically found (361.5-753.5 Bq m(-3)). Thus, it is of importance to perform a national campaign on radon measurements and to reduce exposure.


Assuntos
Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Radônio/análise , Pré-Escolar , Ritmo Circadiano , Humanos , Lactente , Recém-Nascido , Berçários para Lactentes , Portugal , Monitoramento de Radiação , Instituições Acadêmicas
9.
Environ Res ; 140: 1-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25800634

RESUMO

Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study "Children's exposure to indoor air in urban nurseries", aimed to: i) evaluate nurseries' indoor concentrations of carbon dioxide (CO2), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters-temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO2 concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados , Dióxido de Carbono/análise , Exposição Ambiental , Berçários para Lactentes , População Urbana , Criança , Fidelidade a Diretrizes , Nível de Saúde , Humanos
10.
Environ Pollut ; 202: 7-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25795175

RESUMO

Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM1, PM2.5 and PM10 fractions (measured continuously and in terms of mass). Outdoor PM2.5 and PM10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM2.5 and PM10 were observed mainly in the urban nursery school.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , População Rural , Escolas Maternais , População Urbana , Criança , Pré-Escolar , Monitoramento Ambiental/legislação & jurisprudência , Regulamentação Governamental , Humanos , Masculino , Tamanho da Partícula , Portugal
11.
Environ Res ; 135: 317-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25462682

RESUMO

Exposures to a wide spectrum of air pollutants were associated to several effects on children's health. Exposure assessment can be used to establish where and how air pollutants' exposures occur. However, a realistic estimation of children's exposures to air pollution is usually a great ethics challenge, especially for young children, because they cannot intentionally be exposed to contaminants and according to Helsinki declaration, they are not old enough to make a decision on their participation. Additionally, using adult surrogates introduces bias, since time-space-activity patterns are different from those of children. From all the different available approaches for exposure assessment, the microenvironmental (ME) modelling (indirect approach, where personal exposures are estimated or predicted from microenvironment measurements combined with time-activity data) seemed to be the best to assess children's exposure to air pollution as it takes into account the varying levels of pollution to which an individual is exposed during the course of the day, it is faster and less expensive. Thus, this review aimed to explore the use of the ME modelling approach methodology to assess children's exposure to air pollution. To meet this goal, a total of 152 articles, published since 2002, were identified and titles and abstracts were scanned for relevance. After exclusions, 26 articles were fully reviewed and main characteristics were detailed, namely: (i) study design and outcomes, including location, study population, calendar time, pollutants analysed and purpose; and (ii) data collection, including time-activity patterns (methods of collection, record time and key elements) and pollution measurements (microenvironments, methods of collection and duration and time resolution). The reviewed studies were from different parts of the world, confirming the worldwide application, and mostly cross-sectional. Longitudinal studies were also found enhancing the applicability of this approach. The application of this methodology on children is different from that on adults because of data collection, namely the methods used for collecting time-activity patterns must be different and the time-activity patterns are itself different, which leads to select different microenvironments to the data collection of pollutants' concentrations. The most used methods to gather information on time-activity patterns were questionnaires and diaries, and the main microenvironments considered were home and school (indoors and outdoors). Although the ME modelling approach in studies to assess children's exposure to air pollution is highly encouraged, a validation process is needed, due to the uncertainties associated with the application of this approach.


Assuntos
Poluentes Atmosféricos/análise , Meio Ambiente , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Modelos Biológicos , Criança , Monitoramento Ambiental/estatística & dados numéricos , Humanos , Atividade Motora , Inquéritos e Questionários , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...